1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
| # 指定kafka节点列表,用于获取metadata,不必全部指定 #需要kafka的服务器地址,来获取每一个topic的分片数等元数据信息。 #對於開發者而言,需要通過broker.list指定當前producer需要關注的broker列表,producer通過和每個broker連接,並獲取partitions,如果某個broker連接失敗,將導致此上的partitions無法繼續發佈消息。格式:host1:port,host2:port,其中host:port需要參考broker配置文件。對於producer而言沒有使用zookeeper自動發現broker列表,非常奇怪。 metadata.broker.list=kafka01:9092,kafka02:9092,kafka03:9092
#生产者生产的消息被发送到哪个block,需要一个分组策略。 #指定分区处理类。默认kafka.producer.DefaultPartitioner,表通过key哈希到对应分区 #partitions路由類,消息在發送時將根據此實例的方法獲得partition索引號 #partitioner.class=kafka.producer.DefaultPartitioner
#生产者生产的消息可以通过一定的压缩策略(或者说压缩算法)来压缩。消息被压缩后发送到broker集群, #而broker集群是不会进行解压缩的,broker集群只会把消息发送到消费者集群,然后由消费者来解压缩。 #是否压缩,默认0表示不压缩,1表示用gzip压缩,2表示用snappy压缩。 #压缩后消息中会有头来指明消息压缩类型,故在消费者端消息解压是透明的无需指定。 #文本数据会以1比10或者更高的压缩比进行压缩。 compression.codec=none
#指定序列化处理类,消息在网络上传输就需要序列化,它有String、数组等许多种实现。將消息實體轉換成byte[] serializer.class=kafka.serializer.DefaultEncoder key.serializer.class=${serializer.class}
#如果要压缩消息,这里指定哪些topic要压缩消息,默认empty,表示不压缩。 #如果上面启用了压缩,那么这里就需要设置 #compressed.topics= #这是消息的确认机制,默认值是0。在面试中常被问到。 #producer有个ack参数,有三个值,分别代表: #(1)不在乎是否写入成功; #(2)写入leader成功; #(3)写入leader和所有副本都成功; #要求非常可靠的话可以牺牲性能设置成最后一种。 #为了保证消息不丢失,至少要设置为1,也就 #是说至少保证leader将消息保存成功。 #设置发送数据是否需要服务端的反馈,有三个值0,1,2,分别代表3种状态: #0: producer不会等待broker发送ack。生产者只要把消息发送给broker之后,就认为发送成功了,这是第1种情况; #1: 当leader接收到消息之后发送ack。生产者把消息发送到broker之后,并且消息被写入到本地文件,才认为发送成功,这是第二种情况; #2: 当所有的follower都同步消息成功后发送ack。不仅是主的分区将消息保存成功了,而且其所有的分区的副本数也都同步好了,才会被认为发动成功,这是第3种情况。 request.required.acks=0
#broker必须在该时间范围之内给出反馈,否则失败。 #在向producer发送ack之前,broker允许等待的最大时间 ,如果超时, #broker将会向producer发送一个error ACK.意味着上一次消息因为某种原因 #未能成功(比如follower未能同步成功) request.timeout.ms=10000
#生产者将消息发送到broker,有两种方式,一种是同步,表示生产者发送一条,broker就接收一条; #还有一种是异步,表示生产者积累到一批的消息,装到一个池子里面缓存起来,再发送给broker, #这个池子不会无限缓存消息,在下面,它分别有一个时间限制(时间阈值)和一个数量限制(数量阈值)的参数供我们来设置。 #一般我们会选择异步。 #同步还是异步发送消息,默认“sync”表同步,"async"表异步。异步可以提高发送吞吐量, #也意味着消息将会在本地buffer中,并适时批量发送,但是也可能导致丢失未发送过去的消息 producer.type=sync
#在async模式下,当message被缓存的时间超过此值后,将会批量发送给broker, #默认为5000ms #此值和batch.num.messages协同工作. queue.buffering.max.ms = 5000
#异步情况下,缓存中允许存放消息数量的大小。 #在async模式下,producer端允许buffer的最大消息量 #无论如何,producer都无法尽快的将消息发送给broker,从而导致消息在producer端大量沉积 #此时,如果消息的条数达到阀值,将会导致producer端阻塞或者消息被抛弃,默认为10000条消息。 queue.buffering.max.messages=20000
#如果是异步,指定每次批量发送数据量,默认为200 #消息在producer端buffer的條數,僅在producer.type=async下有效 batch.num.messages=500
#在生产端的缓冲池中,消息发送出去之后,在没有收到确认之前,该缓冲池中的消息是不能被删除的, #但是生产者一直在生产消息,这个时候缓冲池可能会被撑爆,所以这就需要有一个处理的策略。 #有两种处理方式,一种是让生产者先别生产那么快,阻塞一下,等会再生产;另一种是将缓冲池中的消息清空。 #当消息在producer端沉积的条数达到"queue.buffering.max.meesages"后阻塞一定时间后, #队列仍然没有enqueue(producer仍然没有发送出任何消息) #此时producer可以继续阻塞或者将消息抛弃,此timeout值用于控制"阻塞"的时间 #-1: 不限制阻塞超时时间,让produce一直阻塞,这个时候消息就不会被抛弃 #0: 立即清空队列,消息被抛弃 queue.enqueue.timeout.ms=-1
#当producer接收到error ACK,或者没有接收到ACK时,允许消息重发的次数 #因为broker并没有完整的机制来避免消息重复,所以当网络异常时(比如ACK丢失) #有可能导致broker接收到重复的消息,默认值为3. message.send.max.retries=3
#producer刷新topic metada的时间间隔,producer需要知道partition leader #的位置,以及当前topic的情况 #因此producer需要一个机制来获取最新的metadata,当producer遇到特定错误时, #将会立即刷新 #(比如topic失效,partition丢失,leader失效等),此外也可以通过此参数来配置 #额外的刷新机制,默认值600000 topic.metadata.refresh.interval.ms=60000
|